

CAR PARK VENTILATIONS SYSTEM

VOLUME CALCULATIONS

Volume (V) = Area (A) x Height (h) Area = Width x Lenght = 30 x 100 = 3000 m2

Height= 3 m

Volume = $3000 \times 3 = 9000 \text{ m}$

02

AIRFLOW CALCULATION

Airflow (Q) = Volume (V) x Air Change (Ach) a)Daily Ventilation (CO) Airflow Air Change = 6/hAirflow = $9000 \times 6 = 54000 \text{ m}3/h$ b)Fire Mode (Ventilation) Air Change = 10/hAirflow = $9000 \times 10 = 90000 \text{ m}3/h$

* Minimum Air change rates are used based on BS 7346-7 Standards. Air change rate should be higher as per architechtural requirements.

EXHAUST AND FRESHAIR (SUPPLY) FAN SELECTION

A-Airflow

Exhaust Fan (EXF)

 $EXF = 90.000 \text{ m}3/\text{h} \times \%50 = 45.000 \text{ m}3/\text{h}$

EXF-1 = 45.000 m3/h

EXF-2 = 45.000 m3/h

Exhaust fans must be back up %50 as per BS 7346-7 Standards

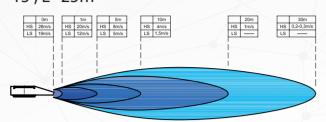
B-Pressure Drop

Pressure drops on Shaft, Silencer, Dampers and Grills will be calculated based on air speeds.

C-Fire Endurance

Exhaust and Jetfans will be selected based on TS/EN 12101-3 Fire Endurance standards.

Class	Heat (C)	Minimum Endurance (Min)	
F200	200	120	
F300	300	60	
F400	400	120	
F600	600	60	
F842	842	30	


*TS/EN 12101-3 Fire Endurance Class

wwwi.cvsair.com.tr sales@cvsair.com.tr

CARPARK VENTILATION SYSTEMS AND PLACEMENT

Optimum Thurst power jetfan will be selected consider on size of carpark. Radial Jetfans applications will be advantage on limited ceil height basements and non-reversable options. W=15, L=25m

05

SHAFT SIZING

a) Air Speed Method;

Shaft Sizes will be calculated with Avarage air speed 8 m/s on section area.

Airflow = Area x Speed

Area = $54000 \text{ m}3/\text{h} \times 1/3600 \text{ h/sec} / 8 \text{ m/s}$ =1,875 m2

b) Fan Size Method;

Placement of fans inside shaft based on Section air speed, Fan sizes must be considered.

SHAFT DAMPER SIZING

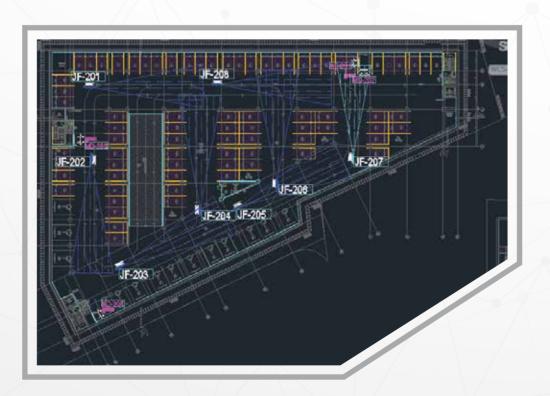
Zone arrangement at the interstory, Motorized Smoke Dampers will be selected based on 8 m/sec for Each fan inside exhaust shaft.

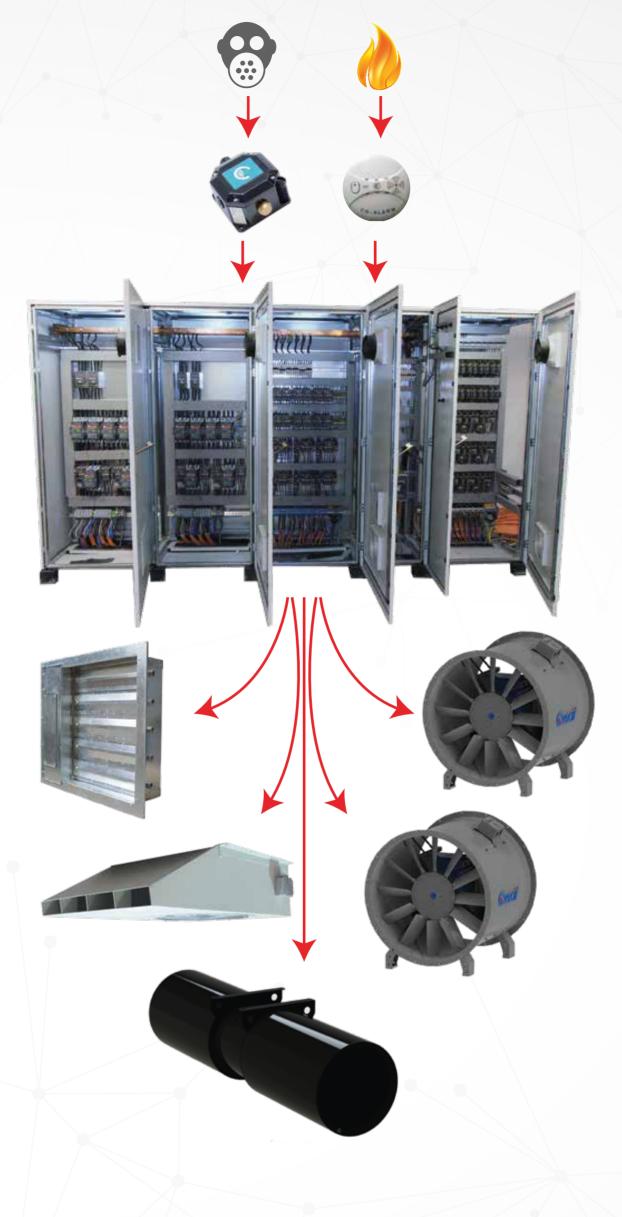
Efective Area = $27.000 \text{ m}3/\text{h} \times 3600 \text{ h/sec} / 8 \text{ m/sec}$ = 0.93 m2

SYSTEM SCREEN PREPARATION

Selected Damper is 2 pcs 1000x1000 mm.

PRODUCT	OPERATION MODE			
CODE	CO Low	CO Mid	CO High	Fire
JF-1	50%	50%	50%	100%
JF - 2	50%	50%	50%	100%
JF-3	50%	50%	50%	100%
JF-4	50%	50%	50%	100%
JF - 5	50%	50%	50%	100%
JF-6	50%	50%	50%	100%
SEF-1	25%	50%	75%	100%
SEF-2	25%	50%	75%	100%
FAF-1	25%	50%	75%	100%
SD-1	OPEN	OPEN	OPEN	OPEN
SD-2	-	-	-	-


*Jetfans are operate with 3 min delay,



CFD ANALYSIS

Design model will be created with CFD programme and necessary modifications should be completed.

System operation will be checked with CFD Simulation.

JETFAN SYSTEM COST ESTIMATION			
System	Price		
1-Jetfan	24.000 CVS		
2-Smoke Exhaust Fans	13.500 CVS		
3-Freshair (Supply) Fans	4.100 CVS		
4-Shaft Dampers	3.100 CVS		
5-System Control Board	16.000 CVS		
6-Electrical Cabling	14.000 CVS		
7-Assambling	5.600 CVS		
8-CO Detection System	18.000 CVS		
9-Fire Detection System	22.000 CVS		
Total	120.300 CVS		

DUCT SYSTEM COST ESTIMATION			
System	Price		
1-Ventilation Duct	55.000 CVS		
2-Smoke Exhaust Fans	48.000 CVS		
3-Freshair (Supply) Fans	5.000 CVS		
4-Grills	3.200 CVS		
5-Fire Zone Damper	3.000 CVS		
6-System Control Board	12.000 CVS		
7-Electrical Cabling	3.000 CVS		
8-CO Detection System	18.000 CVS		
9-Fire Detection System	22.000 CVS		
Total	169.300 CVS		

ENERGY CONSUMPTION (Daily Use)				
1-Jetfan	12 kW	1-Smoke Exhaust Fans	180 kW	
2-Smoke Exhaust Fans	30 kW	2-Freshair (Supply) Fans	16,5 kW	
3-Freshair (Supply) Fans	75 kW			
Total	117 kW	Total	196,5 kW	

	%40,4 ENERGY C	ONSERVATION		
Daily Consumption*	351 kW	Daily Consumption*	589,8 kW	
Annual Cost**	25623 kW	Annual Cost**	43,055 kW	
17432 CVS Advantage per year				

*3 Hour Operation bases

**kW/h Price based on 0,20 CVS

-Calculation estimated based on; 8.000m² carpark with 3 m height.

-Smoke exhaust fans, F300 fire rated and dual speed

-Price estimation included; one way silencer, connection

feet, counter flange and anti-vibration set

-Jetfans are Axial (Impulse) type and 50/13 Newton power.

-The chart only for estimation and currency is accepted as "CVS"

AXIAL DUCT FAN

- Galvanized steel case (TS EN ISO 1461)
- Aerofoil aluminium impellers (Polyamide alternative)
- Adjustable pitch angle for maximum efficiency
- Frequency invertor
- Double speed
- AMCA LAB. Tested

ROOF FAN

- Sheet steel casing
- Vertical exhaust
- Motor out of air flow
- Suitable for continuously 120°C
- Impeller ,backward curved blades

VERTICAL DISCHARGE FLAP ROOF FAN

- Galvanised sheet metal with electrostatic oven drying case
- AerofoiL sectioned aluminium blades
- Adjustable blade angles for maximum efficiency
- Three-phased motors suitable to operate with frequency
- Suitable to operative outdoor
- EN 12101-3 certificated

AXIAL JET FAN

- 2 speed motors for daily ventilation and in case of fire
- % 100 unidirectional option
- Galvanized steel case (TS EN ISO 1461)
- Guard grill and adjustable deflector
- Self sound absorber fan case
- Insulation class H, IP55 high efficiency IE2 motors
- EN 12101- 3 certified 200°C / 2h, 300°C / 2h, 400°C / 2h
- %100 Reversible

DETECTION SENSORS

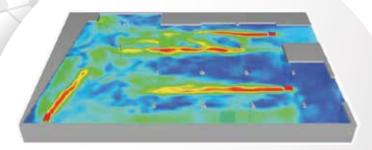
- Carbon Monoxide detection
- Fire detection (Smoke / heat)
- NO₂ detection systems

SILENCER

With or without Pod

CONTROL UNITS

- MCC /DDC Board
- System script
- Low Maintence and operating costs
- Energy saver



- Frequency invertor
- Damage info

- Operator Board

CFD ANALYSIS

- Demonstration of speed, optical density, temperature,
- smoke distribution analysis from 1.7 m (human eye level).
- Air velocities on ramps and escape routes are not above 5 m/s.
- The visibility is not less than 10m.
- · Criteria for not exceeding 60°C in escape routes.

RADIAL JET FAN

CERTIFICATES


CE®

- Galvanized steel case (TS EN ISO 1461)
- Guard grill and adjustable deflector
- Terminal box out of case
- Insulation class H, IP55 high efficiency IE2 motors
- EN 12101-3 certified 300°C / 2h, 400°C / 2h

DAMPER

- Action mechanism competent to fire
- Interstage zoning

www\.cvsair.com.tr sales@cvsair.com.tr

